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Abstract

Three-dimensional semi-active vibration control of an inclined sag cable with discrete magnetorheological (MR)

dampers is investigated in this paper using the finite difference method (FDM). A modified Dahl model is used to describe

the dynamic property of MR damper. The nonlinear equations of motion of cable–dampers system are first established,

which accounts for coupling between in-plane and out-of-plane motions, and also for the displacement of the support

points. A MR damper can be considered as a variable friction damper approximately, so a semi-active control strategy

based on the modulated homogeneous friction algorithm is proposed. Taking a typical short cable as an example, the

vibration reduction ability with optimally controlled MR dampers is verified numerically by comparison with the viscous

damper tuned to a single mode response. The analysis show that, if the conditions are fulfilled at which the optimal tuned

viscous damper is designed, the MR damper and the viscous damper are performing equally well; however, if the response

of the cable is dominated by several modes, the MR damper can achieve better vibration reduction effect compared with

viscous damper. Especially, if the amplitude of the support point motion less than a threshold value, MR damper can

prevent subharmonic excitation caused by support point motion from taking place, consequently, MR damper achieves

significant vibration reduction compared to viscous damper. In addition, the influence of measurement noise on control

effect and the robustness of the proposed semi-active control rule are also examined.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Due to large flexibility, relatively small mass and extremely low inherent damping, cables used in bridges
and to support masts and towers may be prone to excessive vibrations, either caused by wind or a combination
of wind and rain, or by the motion of the supported structures, which can cause premature cable or connection
failure and consequently reduce the service life of the cable structure [1]. To overcome cable vibration
problems transversally attached passive dampers have been implemented in various bridges for vibration
mitigation. Kovacs found that the maximum modal damping ratio that could be provided by the damper was
approximately half the relative distance of the damper from the support [2]. Pacheo et al. [3] introduced
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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nondimensional parameter to develop a ‘‘universal estimation curve’’ for the linear viscous damper. Yu and
Xu [4] developed a hybrid method to study three-dimensional vibration of inclined cable with oil dampers and
to consider the influence of cable sag, cable inclination and damper direction and others. Krenk [5] performed
a complex modal analysis for a taut cable with viscous damper and obtained an accurate explicit asymptotic
solution for the damping properties in terms of the complex wavenumber. Krenk and Nielsen [6] extended the
complex modal analysis to cables with sag, and obtained explicit results for the modal damping ratios and for
the optimal tuning of the damper. Further, Nielsen and Krenk [7] studied the whirling harmonic motion
around the chord line of a shallow cable with viscous damper caused by nonlinear coupling of pairs of modes.
Main and Jones [8] studied free vibration of a taut cable with a linear viscous damper and obtained the range
of attainable modal damping ratios and corresponding oscillation frequencies in every mode for a given
damper location without approximation. However, the optimal damping ratio for linear damper can be
achieved in only one mode of vibration: if the damper is designed for optimal performance in a particular
mode, it will be too rigid in higher modes and too compliant in lower modes. So some other types of damping
devices have been investigated as alternatives to the linear damper for cable vibration reduction. Carne [9]
investigated a friction damper using equivalent energy dissipation criterion. Kovacs et al. [10] made a similar
numerical analysis of this damper. The free vibration of a taut cable with a nonlinear power-law damper was
investigated by Main and Jones [11]. They derived an approximate analytical solution for the amplitude-
dependent effective damping ratios in each mode, and pointed out that nonlinear damper could potentially
allow optimal damping performance to be achieved over a wider range of modes than in the linear case.
Besides, theoretical and experimental studies of active control of cable vibrations by axial support motion and
active tension control have also been explored [12–15]. However, a number of implementation difficulties
remain to be solved before fully active vibration control becomes practically applicable in bridge cables.

Recently, research attention has been paid to semi-active control of cable vibration. Semi-active dampers
can offer the adaptability of active control devices without requiring the associated large power sources, and
moreover, semi-active dampers are fail-safe since they can serve as passive dampers if the power fails. Johnson
et al. [16] demonstrated that smart semi-active damping could provide 50–80% reduction in cable response
compared with the optimal passive linear damper. It should be noted that only the ideal semi-active damper is
used in Johnson’s study, so, the indicated significant reduction can hardly be achieved in reality. However, the
study suggests that smart damper could be an effective replacement for passive viscous damping of cables. One
semi-active device that appears to be particularly promising is the magnetorheological (MR) damper. Ni et al.
[17] developed neural network control strategies corresponding to a full-order system model and a reduced-
order modal model for semi-active vibration control of stay cables using MR dampers. Through a series of
numerical studies of the benchmark cable-stayed bridge problem, Moon et al. [18] investigated the
effectiveness of the SMC-based semi-active control system using the MR dampers in mitigating structural
responses for a wide range of seismic loading conditions. The implementation of MR dampers to a cable-
stayed bridge and field measurements showed that the MR dampers could effectively mitigate cable vibration
caused by wind-and-rain excitation or other excitation sources [19,20].

The three-dimensional semi-active vibration control of an inclined sag cable with MR dampers is
investigated in this paper. The three-dimensional problem is studied because dampers usually are installed in
pairs to stay cables to keep the damper system stable and to reduce both in-plane and out-of-plane cable
vibration simultaneously [4]. At first, the nonlinear equations of motion of the cable–damper system are
established, taking the cable sag, cable inclination, flexural rigidity of the cable, damper direction and others
parameters into consideration. The derived governing equations account for coupling between in-plane and
out-of-plane motions, and also for the displacement of the support points. Among the various numerical
methods applied to cable dynamics, the finite difference method (FDM) and the finite element method (FEM)
are commonly used [21–24]. In this paper, the FDM is adopted. After the field equations have been discretized,
the Newmark beta integration method incorporated with the Newton–Raphson iteration technique is used to
solve resulting nonlinear governing ordinary differential equations. The semi-active control strategy based on
the modulated homogeneous friction algorithm is proposed. Because only the local dynamic response, i.e., the
displacement and velocity of the MR dampers are measured, and moreover, the structural parameters of the
cable cannot be accurate, the proposed control rule is robust and to be readily implemented. Taking a typical
short cable as an example, the vibration reduction ability with MR dampers is verified numerically by
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comparison with the optimal viscous damper. The influence of measurement noise on control effect and the
robustness of the proposed semi-active control rule are also examined.

2. Mechanics of damper and cable

2.1. Mechanical model of MR damper

It is very important to establish an accurate mechanical model of the MR damper in order to simulate the
damper property and structural vibration control properly. Up to now, the phenomenological model based on
the Bouc-Wen model proposed by Spencer et al. [25] is rather accurate to describe dynamical behaviour of MR
damper. However, the number of parameters to be identified is up to 14, which lead to some problems in
practical applications. Essentially, MR damper can be considered as a variable friction damper. However, the
well-known Coulomb model cannot capture the velocity–force relationship of the MR damper when the
velocity is near zero [25], so it is rational that some hysteresis models described to friction force are adopted to
simulate the mechanical property of MR damper. Recently, according to experimental results, Zhou and Qu
[26] suggested a more simple and effective modified Dahl model as shown in Fig. 1. In this model, the Dahl
hysteresis model instead of the Bouc-Wen model is adopted to simulate Coulomb force to avoid the
determination of too many parameters. Besides, the modified Dahl model can well capture the force–velocity
relationship in the low velocity region.

The damper force is given by

F ¼ K0xþ C0 _xþ FdZ � f 0, (1)

where K0 is stiffness, C0 is damping coefficient, Fd is Coulomb force modulated by applied magnetic field, x is
displacement of MR damper, f0 is damper force caused by seals and measurement bias. Z is nondimensional
hysteretic variable governed by [27]

_Z ¼ s _xð1� Z sgnð _xÞÞ, (2)

where s determines hysteretic loop shape.
In order to calibrate the modified Dahl model under an applied fluctuating magnetic field, it is necessary to

obtain relationship between model parameters and applied magnetic field. The experimental results show that
C0 and Fd are related with applied voltage as follows:

C0 ¼ C0s þ C0du; Fd ¼ Fds þ Fddu, (3)

where C0s and Fds are damping coefficient and Coulomb force of MR damper at 0V, respectively. u is an
intrinsic variable to determine the function dependence of the parameters on the applied voltage V. The
relationship between u and V is modelled by the first-order filter [25],

_u ¼ �Zðu� V Þ, (4)

where Z reflect response time of MR damper, namely, larger Z means shorter response time. V is applied
voltage.
Dahl model

C0

K0

x

F+f0

Fig. 1. Modified Dahl model of MR damper.



ARTICLE IN PRESS
Q. Zhou et al. / Journal of Sound and Vibration 296 (2006) 1–224
Therefore, a total of eight parameters (C0s, C0d, Fds, Fdd, K0, s, f0 and Z) should be determined for the
proposed MR damper model.

In order to verify the proposed modified Dahl model, a MR damper was produced and the corresponding
experiment was carried out. Figs. 2 and 3 are the comparison between the experimental results and the
theoretical results when the voltage applied to the MR damper is constant and changeable, respectively. The
agreement shows that the modified Dahl model can simulate the dynamic characteristics of the MR damper
with sufficient accuracy.
2.2. Equations of motion of cable

This study concerns three-dimensional vibration of an inclined sag cable with MR dampers installed near
the cable supporting points as shown in Fig. 4. The cable is assumed to be shallow; for a horizontal cable, this
requires the sag-to-span ratio ranging from nearly zero to about 1:8; for inclined cables the assumption
presumes a somewhat smaller range of sag [28]. The model of the cable is written in a local coordinate system
as indicated in Fig. 4. The local x coordinate is taken along the chord line while the y coordinate is in the
gravity plane orthogonal to the chord line. The cable is assumed to have a uniform cross section along its
length. Considering the flexural rigidity of the cable, the nonlinear equations of motion of the cable with MR
dampers can be expressed as

q
qs
ðT þ tÞ

dx

ds
þ

qu

qs

� �� �
þ F x þ

XM
j¼1

Fdx;jdðs� sjÞ ¼ m
q2u
qt2
�mg sin yþ c1

qu

qt
, (5)
Fig. 2. Verification of the proposed modified Dahl model when applied voltage is constant: thick line, analytical result; thin line,

experimental result.

Fig. 3. Verification of the proposed modified Dahl model when applied voltage is fluctuated: thick line, analytical result; thin line,

experimental result.
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Fig. 4. Schematic diagram of an inclined sag cable with MR dampers.
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�EI
q4ðyþ wÞ

qx4
þ

q
qs
ðT þ tÞ

dy

ds
þ

qw

qs

� �� �
þ F y þ

XM
j¼1

Fdy;jdðs� sjÞ ¼ m
q2w

qt2
�mg cos yþ c1

qw

qt
, (6)

�EI
q4v
qx4
þ

q
qs
ðT þ tÞ

qv

qs

� �
þ F z þ

XM
j¼1

Fdz;jdðs� sjÞ ¼ m
q2v
qt2
þ c2

qv

qt
, (7)

where T is the static cable tension; t is the additional dynamic cable tension; u, w and v are the cable dynamic
displacement components in the x, y and z direction, respectively, measured from the static equilibrium
position; s is the Lagrangian coordinate in the unstrained cable profile; Fx, Fy and Fz are external dynamic
loading per unit length in the x, y and z direction, respectively; Fdx,j, Fdy,j and Fdz,j are the forces generated by
the jth MR damper on the cable at the location of sj in the x, y and z direction, respectively; E is Young’s
modulus of the cable material; I is moment of inertia of cable cross section; M is the total number of MR
dampers; d is the Dirac’s delta function; m is the mass of the cable per unit length; t is the time; y is the angle of
chord line with respect to the horizontal plane; c1 and c2 are the in-plane and out-of-plane internal damping
coefficients of the cable, respectively; and g is the acceleration due to gravity.

Introduce the following transformations:

q
qs
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
; H ¼ T

dx

ds
; h ¼ t

dx

ds
. (8)

Because the profile is shallow, the longitudinal component of the equation of motion is considered
unimportant, and is dropped [28]. Considering the equations of static equilibrium of the cable, Eqs. (6) and (7)
can be rewritten as

�EI
q4ðyþ wÞ

qx4
þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qw

qx
þ hyx

� �
þ F y þ

XM
j¼1

Fdy;jdðx� ðl � xjÞÞ ¼ m
q2w

qt2
þ c1

qw

qt
, (9)

�EI
q4v
qx4
þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qv

qx

� �
þ F z þ

XM
j¼1

Fdz;jdðx� ðl � xjÞÞ ¼ m
q2v

qt2
þ c2

qv

qt
, (10)

where H and h are the components of the static cable tension and dynamic cable tension in the x direction,
respectively; yx is the first derivative of y with respect to x; xj is the coordinate of the jth MR damper; and l is
the cable chord length.
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Within the shallow cable approximation the static curve of the cable is the parabola

y ¼
mgl2 cos y

2H

x

l
1�

x

l

� �h i
. (11)

The additional dynamic cable tension can be assumed constant along the cable span [29] and can be
expressed as [28]

h
ds

dx

� �3

¼ EA
qu

qx
þ

dy

dx

qw

qx
þ

1

2

qw

qx

� �2

þ
1

2

qv

qx

� �2
" #

, (12)

where A is cross-sectional area of cable.
The boundary conditions of the cable considered here are:

uð0; tÞ ¼ u1ðtÞ; uðl; tÞ ¼ u2ðtÞ, (13a)

wð0; tÞ ¼ w1ðtÞ; wðl; tÞ ¼ w2ðtÞ, (13b)

vð0; tÞ ¼ v1ðtÞ; vðl; tÞ ¼ v2ðtÞ. (13c)

Then the three components of displacement u, w and v can be expressed in the form

uðx; tÞ ¼ usðx; tÞ; wðx; tÞ ¼ wsðx; tÞ þ wdðx; tÞ; vðx; tÞ ¼ vsðx; tÞ þ vd ðx; tÞ, (14)

where us(x,t), ws(x,t) and vs(x,t) are the pseudo-static displacements in the x, y and z direction, respectively;
and wd(x,t) and vd(x,t) are the relative dynamic displacements in the y and z direction, respectively.

From the geometry of a cable under different support motion [30], the pseudo-static displacement are given
by [31]

usðx; tÞ ¼ 1�
x

l

� �
u1ðtÞ þ

x

l
u2ðtÞ, (15a)

wsðx; tÞ ¼ 1�
x

l

� �
w1ðtÞ þ

x

l
w2ðtÞ, (15b)

vsðx; tÞ ¼ 1�
x

l

� �
v1ðtÞ þ

x

l
v2ðtÞ. (15c)

Substituting Eq. (15) into Eqs. (9) and (10), and omitting c1½ðqwsðx; tÞÞ=qt� and c2½ðqvsðx; tÞÞ=qt�, then Eqs. (9)
and (10) can be rewritten as

� EI
q4wd

qx4
þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qwd

qx
þ hyx

� �
þ F y þ

XM
j¼1

Fdy;jdðx� ðl � xjÞÞ

¼ m
q2wd

qt2
þ c1

qwd

qt
þm

q2ws

qt2
, ð16Þ

�EI
q4vd

qx4
þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x

p q
qx
ðH þ hÞ

qvd

qx

� �
þ Fz þ

XM
j¼1

Fdz;jdðx� ðl � xjÞÞ ¼ m
q2vd

qt2
þ c2

qvd

qt
þm

q2vd

qt2
. (17)

Substituting Eqs. (8), (11), (14), (15) into Eq. (12), performing the integration over l and discarding the
differentials of high orders result in

hLe

EA
¼ ðu2 � u1Þ þ

mg cos y
H

Z l

0

wd dxþ
1

2

Z l

0

dwd

dx

� �2

dxþ
1

2

Z l

0

dvd

dx

� �2

dx, (18)

where Le denotes the so-called effective cable length

Le ¼

Z l

0

ds

dx

� �3

dx �

Z l

0

1þ
3

2

dy

dx

� �2
 !

dx ¼ l 1þ 8
f

l

� �2
" #

, (19)
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where f is the sag at mid-span

f ¼
mgl2 cos y

8H
. (20)

From Eq. (18), one can notice that h depends on both wd and vd. Therefore, Eqs. (16) and (17) account for
coupling between in-plane and out-of-plane motions.

2.3. Damper forces

Let us consider the force Fdy,j and Fdz,j produced by the jth MR damper on the cable in the y and z direction,
respectively. The direction of each damper from the deck to the cable is defined as the positive direction.

The displacement and velocity of the MR damper linking the points C and E are, see Fig. 4,

½X C
_X C � ¼ ½cos a sin g1 � sin a sin g1 cos g1�

� sin y 0

cos y 0

0 1

2
64

3
75 wd ðl � xj ; tÞ _wdðl � xj ; tÞ

vdðl � xj ; tÞ _vdðl � xj ; tÞ

" #
, (21)

where a and g1 are defined in Fig. 4.
After the displacement and velocity of the MR damper are known, the output force Fd,C can easily be

obtained from Eqs. (1) and (2). Then, the two components of Fd,C in the y and z directions are given by

Fdy;C

Fdz;C

( )
¼
� sin y cos y 0

0 0 1

� � � cos a sin g1
sin a sin g1
� cos g1

8><
>:

9>=
>;Fd;C . (22)

Similarly, For the MR damper linking points D and E, see Fig. 4, the displacement and velocity become

½X D
_X D� ¼ ½cos a sin g2 � sin a sin g2 � cos g2�

� sin y 0

cos y 0

0 1

2
64

3
75 wdðl � xj ; tÞ _wd ðl � xj ; tÞ

vdðl � xj ; tÞ _vdðl � xj ; tÞ

" #
. (23)

The two components of Fd,D in the y and z directions are given by

Fdy;D

Fdz;D

( )
¼
� sin y cos y 0

0 0 1

� � � cos a sin g2
sin a sin g2
cos g2

8><
>:

9>=
>;Fd;D. (24)

2.4. Discretization of differential equation

The FDM is applied to discretize the nonlinear partial differential Eqs. (16) and (17). The cable length is
divided into (n+1) equidistance nodes with x0 ¼ 0 and xn+1 ¼ l. The interval distance between the ith and
(i+1)th nodes is a ¼ l/(n+1). Using the central difference algorithm, the derivatives of the dynamic
displacement component at the ith node can be expressed as

q2wd

qx2

� �
i

¼
1

a2
ðwd;iþ1 � 2wd;i þ wd;i�1Þ, (25a)

q4wd

qx4

� �
i

¼
1

a4
ðwd;iþ2 � 4wd;iþ1 þ 6wd;i � 4wd;i�1 þ wd ;i�2Þ, (25b)

q2vd

qx2

� �
i

¼
1

a2
ðvd;iþ1 � 2vd ;i þ vd;i�1Þ, (25c)
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q4vd

qx4

� �
i

¼
1

a4
ðvd ;iþ2 � 4vd;iþ1 þ 6vd ;i � 4vd;i�1 þ vd ;i�2Þ. (25d)

By integration by part, follows Z l

0

dwd

dx

� �2

dx ¼ �

Z l

0

wd

d2wd

dx2
dx. (26)

Then, the last two terms of the right-hand side of Eq. (18) can be given as

1

2

Z l

0

dwd

dx

� �2

¼ �
1

2
a
Xn

j¼1

wd;j
d2wd

dx2

� �
j

¼
1

a

Xn

j¼1

w2
d;j �

Xn�1
j¼1

wd ;jwd ;jþ1

" #
, (27a)

1

2

Z l

0

dvd

dx

� �2

¼ �
1

2
a
Xn

j¼1

vd ;j
d2vd

dx2

� �
j

¼
1

a

Xn

j¼1

v2d;j �
Xn�1
j¼1

vd;jvd ;jþ1

" #
. (27b)

Substituting Eqs. (25) and (27) into Eqs. (16)–(18) yields the following ordinary differential equations:

m €wd ;i þ c1 _wd;i þ
Hl2

c2a4
ðwd;iþ2 � 4wd;iþ1 þ 6wd;i � 4wd;i�1 þ wd;i�2Þ þ f 1;i �

Xn

j¼1

Fdy;jðx� ðl � xjÞÞ

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q H þ
EA

Le

ðu2 � u1Þ

� �
1

a2
ðwd;iþ1 � 2wd;i þ wd;i�1Þ þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x;i

q l2H

l3
a
Xn

j¼1

wd ;j

¼ F y �m
q2ws

qt2
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

x;i

q mg cos y
H

EA

Le

ðu2 � u1Þ, ð28Þ

m €vd ;i þ c1 _vd ;i þ
Hl2

c2a4
ðvd;iþ2 � 4vd;iþ1 þ 6vd ;i � 4vd;i�1 þ vd ;i�2Þ þ f 2;i �

Xn

j¼1

Fdz;jðx� ðl � xjÞÞ

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q H þ
EA

Le

ðu2 � u1Þ

� �
1

a2
ðvd;iþ1 � 2vd ;i þ vd;i�1Þ ¼ F z �m

q2vs

qt2
, ð29Þ

where f1,i and f2,i are nonlinear terms given as

f 1;i ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

aLe

mg cos y
H

ðwd ;iþ1 � 2wd ;i þ wd ;i�1Þ
Xn

j¼1

wd ;j

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

a3Le

ðwd;iþ1 � 2wd;i þ wd;i�1Þ
Xn

j¼1

w2
d ;j �

Xn�1
j¼1

wd;jwd ;jþ1

" #
þ

Xn

j¼1

v2d ;j �
Xn�1
j¼1

vd ;jvd;jþ1

" #" #

þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

aLe

mg cos y
H

Xn

j¼1

w2
d ;j �

Xn�1
j¼1

wd;jwd;jþ1

" #
þ

Xn

j¼1

v2d ;j �
Xn�1
j¼1

vd ;jvd;jþ1

" #" #
, ð30Þ

f 2;i ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y2
x;i

q EA

aLe

mg cos y
H

ðvd ;iþ1 � 2vd;i þ vd ;i�1Þ
Xn

j¼1

wd ;j

�
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l2 is the nondimensional Irvine parameter for sag extensibility given as [28]

l2 ¼
mgl cos y

H

� �2

l
EA

HLe

(32)

and parameter c, which indicates the relative importance of cable and beam action, is defined as [28]

c ¼ L

ffiffiffiffiffiffi
H

EI

r
. (33)

When c is small, it indicates that beam action predominates. While c is large, cable action is of primary
importance.

The nonlinear equations of dynamic equilibrium (28) and (29) are solved by an incremental-iterative
algorithm based on the Newmark beta algorithm in combination to Newton–Raphson iteration [32].

3. Control strategies

Essentially, MR damper can be considered as a variable friction damper. Inaudi proposed a control strategy
for the design of semi-active friction controllers, the so-called modulated homogeneous friction algorithm [33],
which can obtain quadratic dissipation of energy per cycle in the deformation amplitude and maximum
dissipation efficiency for resistance-force level proportional to deformation. In this control algorithm, the
control friction force for the ith MR damper is proportional to the absolute value of the previous local peak of
the damper deformation signal, that is,

Ni ¼ bi P½X iðtÞ�
�� ��, (34)

where bi40 is controller gain, P[Xi(t)] is local peak of the displacement of the MR damper prior to the current
time t, and can be defined as

P½X iðtÞ� ¼ X iðt� sÞ; s ¼ min t̄X0 :
dX iðt� t̄Þ

dt
¼ 0

	 

, (35)

where s is time interval between the immediate previous local peak and the current time t. After Ni is obtained,
and if Z is large enough, from Eq. (4) it can be assumed that u is approximately equal to V, so according to Eq.
(3b), the required voltage for MR damper is given by

V i;need ¼
Ni � Fds;i

F dd;i
. (36)

As a semi-active controller, the applied voltage to MR damper has a range from 0 to Vmax. So the semi-
active control strategy can take on the following form:

V i ¼

0 Vi;needo0;

V i;need 0pV i;needpVmax;

Vmax Vi;need4Vmax:

8><
>: (37)

From Eq. (34), it should be noticed that the implementation of the control strategy requires only the
measurements of displacement and velocity of the MR dampers.

Compared with other control algorithms based on optimal control theory [34], such as the linear quadratic
regular algorithm, and instantaneous optimal control algorithm, the proposed semi-active control algorithm
has some advantages. The most important merit is the easy implementation because only the local dynamic
responses (displacement and velocity) of the MR dampers are required, and the structural parameters
of cable–dampers system can be estimated roughly. However, the controller gain should be properly
determined only through numerical parameter studies numerical for a given structure. It should be noted that
the proposed semi-active control strategy ignores any information that might be available if some observers
are used.
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4. Numerical simulations

A typical short cable is selected for detailed studies. The chord length L is 144.08m, the modulus of
elasticity E is 1.95� 1011 Pa, the equilibrium force H is 1.32� 107N, the cross-sectional area A is 0.0314m2,
the moment of inertia I is 7.854� 10�5m4, the cable mass per unit length m is 260.62 kg/m, and inclination y is
37.21. The two main parameters of the cable, i.e. l2 and c, are 0.2287 and 133.8, respectively.

The cable natural frequencies of in-plane and out-of-plane modes of the inclined cable without dampers are
given in Table 1. The primary critical damping x of in-plane and out-of-plane vibration of cable is assumed the
same and equal to 0.1%, and the corresponding damping constant of in-plane and out-of-plane vibration c1
and c2 is obtained by [35]

c1 ¼ c2 ¼ 2x
ffiffiffiffiffiffiffiffiffiffiffi
EAm
p

. (38)

To achieve the possible maximum reduction of dynamic response of cable in both in-plane and out-of-plane
vibrations, a pair of MR dampers are installed symmetrically to the cable at a position xj of 3.33% L with
damper direction g1 ¼ g2 ¼ 451 and a ¼ 52:81. The angle a is chosen in a way that the damper forces are acting
normal to the chord line of the inclined cable, which can be regarded as optimum direction [36]. The
parameters of the MR damper are listed in Table 2, and the adjustable voltage range is from 0 to 7V.

To demonstrate the vibration reduction effect with MR dampers, the dynamic response analysis with an
optimal viscous damper is also performed. The installation pattern of viscous dampers is the same as that of
MR dampers. If the flexural rigidity of the cable is ignored, then the optimal normalized damper size
c=ðmLo1Þðxj=LÞ for the first mode is about 0.10 [3,5]. However, in this study, because of the influence of
flexural rigidity, the optimal normalized damper size increases to 0.13, i.e., the optimum damping coefficient
Copt is taken as 7.2536� 105N s/m, as shown in Fig. 5.

After extensive numerical analysis, it can be found that there exists an optimal controller gain b in semi-
active control rule (more detail can be seen in Section 4.4). For the given short cable, the optimal gain b is
about 5.0� 106, which is selected in the following analysis.

The cable is divided into 30, 60 and 90 elements, respectively, and correspondingly the displacement
responses of the cable with MR dampers subjected to external force and to support point motion are shown in
Fig. 6. It can be seen that when n ¼ 29, i.e., the cable is divided into 30 elements, the calculation results is
accurate enough.
4.1. In the case of external force

At first the dynamic response of cable with dampers subjected to a uniformly distributed zero-mean,
stationary Guassian random load. The random load is acting normal to the chord line of the inclined cable as
shown in Fig. 7. The auto-spectral density function of the process is chosen as bandlimited white noise with a
central frequency of 2.5Hz, and a bandwidth of 5.0Hz, which cover the first six in-plane and out-of-plane
modes of the cable. The peak value of the applied load is 350 N/m, acting under 451 to the XY plane,
Table 1

Natural frequencies of in-plane and out-of-plane modes of cable

Mode order Natural frequency (Hz) Remark

In-plane Out-of-plane

1 0.788 0.781 Symmetric mode

2 1.562 1.562 Antisymmetric mode

3 2.343 2.343 Symmetric mode

4 3.124 3.124 Antisymmetric mode

5 3.905 3.905 Symmetric mode

6 4.686 4.686 Antisymmetric mode
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Table 2

Parameter of MR damper

C0s (N s/m) C0d (N s/m/V) Fds (N) Fdd (N/V) K0 (N/m) s (m�1) f0 (N) Z (s�1)

2.4� 104 3.6� 103 2.0� 103 1.5� 104 3.0� 104 5.0� 104 0.0 200

Fig. 5. Damping ratio of the first mode: solid line, EI is ignored; dashed line, EI is considered.

Fig. 6. Variation of the dynamic response of the cable with n: solid line, n ¼ 29; dashed line, n ¼ 59; dotted line, n ¼ 89. (a) external force;

(b) support point motion.
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corresponding to the components is F y ¼ F z ¼ 247:5N=m. The displacements of supporting points are set to
zero.

Fig. 8 shows the displacement response history at the mid-span of the cable. Fig. 9 shows the standard
deviation of the displacement of each node of the cable obtained by ergodic sampling. It is seen that both
viscous dampers and MR dampers can effectively suppress the cable vibrations. Given that the stochastic
excitation primarily causes vibrations in the first mode, and the viscous damper has been tuned to vibrations in
this mode, it is expected that both the MR damper and the viscous damper will work well in this case. As is
seen this is indeed the case. The MR damper is only performing slightly better than the optimal tuned viscous
damper.
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Fig. 7. Time history of uniformly distributed external force.

Fig. 8. Displacement response history at the mid-span of the cable: thick line, MR damper; thin line, viscous damper; dotted line, without

damper. (a) in the Y direction; (b) in the Z direction.
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It may be possible for one control strategy to decrease the motion significant in some regions
of a cable but allow other parts to vibrate relatively unimpeded. Thus, the primary measure of
damper performance is the mean square cable deflection integrated along the length of the cable,
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Fig. 9. Standard deviation of the displacement of each node of the cable: thick line, MR damper; thin line, viscous damper; dotted line,

without damper. (a) in the Y direction; (b) in the Z direction.

Fig. 10. Fourier spectrum of the displacement response of the cable without dampers: thick line, at the quarter-span; thin line, at the

mid-span.
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defined by [16]

s2disp ¼ E

Z l

0

w2ðx; tÞdx

� �
. (39)

The displacement measure sdisp of the cable without control, with viscous dampers and with MR dampers
are 0.426, 0.252 and 0.240m3/2 in the Y direction, and 0.520, 0.262 and 0.245m3/2 in the Z direction,
respectively. Therefore, MR dampers only provide 4.8% and 6.5% reduction of the cable response in the Y

and Z direction compared to the optimal tuned viscous linear dampers with the proposed semi-active control
algorithm. Fig. 10 shows the Fourier spectrum of the displacement response at the mid-span and at the
quarter-span in the Y direction, respectively. It is seen that the peak value is located at 0.781Hz, which is in the
vicinity of the first in-plane natural frequency, indicating the predominating response in the first mode.

Figs. 11 and 12 illustrate the applied voltage history and relationship between control force and
displacement of the MR dampers. Although these two MR dampers are installed symmetrically at the same
node of the cable, the displacement and hence the control signal for each MR damper are different because the
motion of the cable is three-dimensional (see Eqs. (21) and (23)). It is seen that the MR damper linking points
C and E almost behaves like a passive nonlinear damper, and while, the MR damper linking points D and E
serves as a smart damper whose applied maximum voltage is less than 3.5V.

Next, in order to investigate the control effect of the cable during multimode vibrations, the cable is
subjected to an in-plane concentrated harmonic excitation at a position of 0.2L near the damper. The
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harmonic excitation is in the form

F ¼ F0½w sinð2pf 1tÞ þ ð1� wÞ sinð2pf 2tÞ�, (40)

where F0 is the exciting force amplitude, f1 and f2 are the excitation frequencies, and w is an interpolation
parameter. In this example, the force amplitude F0 is ¼ 1300:0N, the excitation frequencies f1 and f2 are taken
to be 0.788 and 1.562Hz, respectively, which are the first two natural frequencies of in-plane mode, and the
interpolation parameter w is 0.77. The displacement response history at the mid-span and at the quarter-span
of the cable, and associated Fourier spectrum of cable without dampers are shown in Figs. 13 and 14,
respectively. As we expected, the first two vibration modes are excitated. The displacement measure sdisp of the
cable without control, with viscous dampers and with MR dampers are 0.279, 0.104 and 0.082m3/2 in the Y

direction, respectively. Hence, MR dampers provide 21.2% reduction in cable response compared to the
optimal tuned viscous linear dampers.

In conclusion, if two or more vibration modes of the cable are excitated significantly, MR damper can
achieve much better vibration reduction effect compared with viscous damper optimally tuned to a single of
these modes.

4.2. Vibration from support point motion

Cables are always used as structural support element of masts, towers and cable-stayed bridges. The
periodic motion of the cable supports is naturally associated with wind- or traffic-induced oscillations of the
deck and/or the tower. If the frequency of oscillation of the deck or the tower falls in certain ranges, the cable
may be excited and exhibit large response amplitudes. The most dangerous situations arise when the frequency
of oscillation of some anchorage is in the neighbourhood of twice or equal to the first natural frequency of the
Fig. 11. Status of the MR damper linking point C and point E.

Fig. 12. Status of the MR damper linking point D and point E.
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Fig. 13. Displacement response history of the cable subjected to the concentrated harmonic force: thick line, MR damper; thin line,

viscous damper; dotted line, without damper. (a) displacement at the mid-span; (b) displacement at the quarter-span.

Fig. 14. Fourier spectrum of the displacement response of the cable without dampers: thick line, at the quarter-span; thin line, at the

mid-span.

Q. Zhou et al. / Journal of Sound and Vibration 296 (2006) 1–22 15
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corresponding stay cable [37]. In this study, only the harmonic motion along the chord of the support B is
considered, while the rest motions of support points are set to zero. The exciting force acting on the cable is
ignored.

At first, the motion frequency O of the support B doubled the first natural frequency of in-plane
mode, i.e. O ¼ 1:576Hz, and the motion amplitude A is 0.045m. Only in-plane vibration is induced
by the motion of the support B. Fig. 15 shows the displacement history at the mid-span of the cable without
dampers, with viscous dampers and with MR dampers, respectively. From Fig. 15, it can be seen that in the
stationary range the maximum value reaches 1.31m due to parametric resonance for the cable without
dampers. The viscous damper can effectively mitigate vibration caused by parametric resonance. In the
stationary range, the peak values are about 0.55m. However, it can be found that the proper MR damper can
prevent subharmonic vibration caused by the support point motion from taking place, and consequently can
achieve quite good control effect. After the vibration of cable is stationary, the peak values are only about
0.04m.

Then the motion amplitude of the support B increases to 0.06m while the motion frequency is
unchangeable. The displacement response at the mid-span of the cable with viscous dampers and with MR
dampers is shown in Fig. 16. It can be found that, because the motion amplitude exceeds a certain threshold
value, the subharmonic vibration occurs for the cable both with viscous dampers and MR dampers. Because
the viscous damper is tuned to the first mode, the MR damper and viscous damper are performing similarly.
Fig. 15. Displacement response history at the mid-span of the cable caused by support point motion, O ¼ 1:576Hz, A ¼ 0:045m:

(a) without damper; (b) with viscous dampers; (c) with MR dampers.
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Fig. 16. Displacement response history at the mid-span of the cable caused by support point motion, O ¼ 1:576Hz, A ¼ 0:06m: (a) with

viscous dampers; (b) with MR dampers.

Q. Zhou et al. / Journal of Sound and Vibration 296 (2006) 1–22 17
Next the motion frequency of the support B is set as the first natural frequency of in-plane mode, i.e.
O ¼ 0:788Hz, and the motion amplitude is still 0.045m. Fig. 17 shows the displacement history at the
mid-span of the cable without dampers, with viscous dampers and with MR dampers, respectively. In these
three cases, it can be seen that cable oscillation excited by the motion of the support exhibits large amplitude
responses. The peak values of displacement at the mid-span are 1.05m (without dampers), 0.74m (viscous
dampers) and 0.67m (MR dampers), respectively. Therefore, one can find again that both viscous damper and
MR damper can suppress cable vibration significantly. Compared with viscous damper, MR damper can
provide 9.4% reduction at the mid-span; in other words, MR damper can only provide a slight better
vibration reduction effect.

4.3. Vibration from the combination of external force and support motion

In general, the dynamic response of the cable is induced by both the external force and support movement.
The external force can be simulated by a broad-banded random process, while the support movement can be
represented by a narrow-banded random process [38]. In practice, the most likely support excitation is not
directly along the chord of the cable, for simplicity, only the motion along the chord of the support B is
considered. The cable is subjected to a uniformly distributed random load described in Section 4.1. The peak
value of the applied load is 350N/m acting in the XY plane. The support movement is assumed to be harmonic
motion, whose amplitude is 0.10m. The motion frequency of the support is selected to be other values that
cannot result in parametric resonance.

The dynamic response of the cable when the motion frequency O of the support B is 1.0 and 1.48Hz are shown
in Figs. 18 and 19, respectively. From Fig. 18, it can be seen that, when O is 1.0Hz, which is close to the first
natural frequency of the cable, the dynamic responses of cable with viscous damper and with MR damper are very
close. The displacement measures sdisp of the cable with viscous damper and with MR damper are 1.458 and
1.454m3/2, respectively. The sdisp ratio of the latter to the former is 0.997. From Fig. 19, one can find that, when O
is 1.48Hz, which is close to the second natural frequency of the cable, MR damper can achieve better control
effect than viscous damper does. The displacement measures sdisp of the cable with viscous damper and with MR
damper are 1.360 and 0.988m3/2, respectively. Then the sdisp ratio of the latter to the former is 0.726, in other
words, the MR damper provides about 27% reduction compared to the viscous damper. A possible explanation
about this is that, as mentioned in Section 4.1, when cable subjected to the combination of the uniformly
distributed broad-banded random external force and the supportly movement, if the motion frequency O of the
support is about equal to the second natural frequency of the cable, the first two vibration modes are excitated, so
MR damper can more effectively mitigate dynamic response of the cable compared to viscous damper; and while,
if O is close to the first natural frequency of the cable, only the first vibration mode is excitated, so the vibration
reduction effect provided by MR damper and by viscous damper is similar.
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Fig. 18. Displacement response history of the cable, O ¼ 1:0Hz, A ¼ 0:10m: thick line, MR damper; thin line, viscous damper.

Fig. 17. Displacement response history at the mid-span of the cable caused by support point motion, O ¼ 0:788Hz, A ¼ 0:045m:

(a) without damper; (b) with viscous dampers; (c) with MR dampers.
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4.4. Influence of controller gain b

Controller gain b plays an important role in semi-active control rule, and should be selected carefully.
Fig. 20 shows the variations of the displacement measure sdisp of the cable with the controller gain. It is seen
that there exists an optimal b by which the best performance of the MR dampers can be achieved. This may be
because that if b is selected too small or too large, the applied voltage would keep constant (0 or Vmax), that is,
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Fig. 20. Variations of the displacement measure sdisp with the controller gain: thick line, in the Y direction; thin line, in the Z direction.

(a) uniform distributed force; (b) combination of external force and the support motion.

Fig. 19. Displacement response history of the cable, O ¼ 1:48Hz, A ¼ 0:10m: thick line, MR damper; thin line, viscous damper.
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the semi-active damper is served as the passive damper, then the property of the damper cannot be modulated
according to the cable vibration and consequently the best vibration reduction effect cannot be obtained.
Fig. 20 shows that the sdisp can be reduced from 0.426 (without control) to 0.237m3/2 in the Y direction and
from 0.520 (without control) to 0.247m3/2 in the Z direction in the case of uniformly distributed random
external force, while the sdisp can be reduced from 4.201 (without control) to 1.274m3/2 when the cable is
subjected to the combination of random external force and the support point harmonic motion, whose
amplitude is 0.16m and frequency is 1.4Hz, respectively, if the optimal b is selected. However, under different
situations, the optimal b is different. Therefore, a trade-off controller gain b should be selected prudently only
after comprehensive studies under different loading conditions, including external force and motion of support
point and others.

4.5. Robustness of the control algorithm

In practice, the structural parameters can hardly be obtained accurately, so it is important that the control
algorithm is robust. The implementation of the adopted control strategy only requires the displacement and
velocity of MR dampers, and only the rough estimation on the structural parameters of the cable is required.
Hence, it is suitable for the structures whose parameters are inaccurate. After rough estimation on structural
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parameters and selection of a proper b, an appropriate semi-active control scheme can be obtained. On the
basis of this, even the selection of structural parameters deviate from the true ones, the better control effect
can still be achieved. In this study, the ratio of true equilibrium force H* to the estimated force H is assumed
to be variable from 0.85 to 1.10. Fig. 21 shows the variations of the displacement measure sdisp of cable with
H*/H when the cable is subjected to the uniformly distributed random force. The vibration of the cable with
viscous damper is also demonstrated in order to verify the robustness and effectiveness of the control
algorithm. It is seen that MR damper can provide better vibration reduction effect than that by viscous
damper in the given range of H*/H.
4.6. Influence of measurement noise

In general, displacement signals are generated through integrated velocity or acceleration signals by
hardware, which results in the error of displacement inevitably. The applied voltage to MR dampers is
determined by local peak of displacement, so it is necessary to study the influence of measurement noise level.
Fig. 22 shows the variations of the displacement measure sdisp of cable with measurement noise level z when
the cable is subjected to the concentrated harmonic force. It is seen that, with the increase of the z, the sdisp
increases from 0.0823 to 0.09m3/2, that is, the performance of MR damper decreases. Therefore, the
measurement error of displacement should be made as small as possible. However, the decrease of
Fig. 21. Variations of the displacement measure sdisp with H*/H when the cable is subjected to the uniform distributed random force:

thick line, MR damper; thin line, viscous damper. (a) in the Y direction; (b) in the Z direction.

Fig. 22. Variations of the displacement measure sdisp with measurement noise level z when the cable is subjected to the concentrated

harmonic force: thick line, MR damper; thin line, viscous damper.
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performance of MR is less than 10% and the control effect by MR dampers is still better than that by viscous
damper. So the influence of measurement noise on vibration reduction effect is not significant using semi-
active control strategy based on the modulated homogeneous friction algorithm.

5. Conclusions

A formulation for three-dimensional nonlinear semi-active vibration control of an inclined sag cable
installed with MR dampers has been presented in this paper. A modified Dahl model is used to describe the
dynamic property of MR damper. The nonlinear equations of motion of the cable–damper system are
proposed, taking the cable sag, cable inclination, bending stiffness of the cable, damper direction and others
into consideration. The derived governing equations account for coupling between in-plane and out-of-plane
motions, and also for the displacement of the support points. Essentially, MR damper can be considered as a
variable friction damper, so a semi-active control rule based on the modulated homogeneous friction
algorithm is proposed. Because only the local dynamic response of MR dampers should be required, and the
structural parameters of the cable can be inaccurate, the proposed control rule is easily implemented and
robust.

Taking a typical short cable as an example, the vibration reduction ability with MR dampers is verified by
comparison with the optimal viscous damper. The numerical results show that, when the proposed semi-active
control strategy based on the modulated homogeneous friction algorithm is adopted, if only one vibration
mode of cable is excitated, the vibration reduction effect by MR damper is close to that by viscous damper
optimally tuned to this mode; however, if two or more vibration modes of cable are excitated, MR damper can
achieve better vibration reduction effect compared with viscous damper. In addition, when the motion
frequency along the chord of the support point is in the neighbourhood of two times the first natural frequency
of the corresponding cable, if the amplitude of the support point motion less than a threshold value, MR
damper can prevent the evolution of subharmonic excitation while viscous damper cannot, consequently, MR
damper can significantly mitigate the vibration of the cable; however, when the motion frequency of support
points is in the neighbourhood of the first natural frequency of the cable, the parametric resonance cannot be
avoided and the vibration reduction effect by MR damper and by viscous damper is similar.

In order to realize the proposed control scheme, only controller gain should be determined. However, in
different situations, the optimal value of controller gain is different. Therefore, a trade-off controller gain
should be selected carefully only after comprehensive studies under various loading conditions. Through
altering structural parameters, the robustness of the control rule is verified. In addition, although the increase
of measurement noise level will lead to decrease in the control effect, the reduced degree is slight. So it can be
believed that the influence of measurement noise on vibration reduction effect is unimportant.
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